Mini AERCam

Dr. Steven E. Fredrickson Jennifer D. Mitchell August 27, 2004

AERCam History

- AERCam is a nano-satellite class free-flying spacecraft with a full suite of avionics, propulsion, navigation, and communications
- · Nearly 10 years of development at JSC
 - 3 major development programs, one ending in DTO of protoflight unit, other two ending in ground demonstrations with integrated hardware and software
 - Incremental increase in capability to reduce crew workload, provide better inspection capability
 - Two crew evaluations
 - Significant technology advancement

AERCam Sprint on STS-87

- Flight tested in December 1997
- · Released during EVA by Winston Scott
- Remotely piloted by Steve Lindsey from the Orbiter aft cockpit
- Flown for over an hour around the Payload Bay
- Demonstrated capabilities included automatic attitude hold, piloted translational and rotational maneuvers

AERCam Technology Demonstration 1997-1998

Demonstrate advanced capabilities

- Better processor than Sprint (Pentium 166 instead of 80C196KC)
- Indoor navigation system used a Litton LN-200 and pseudolite-based relative nav (largely based on Stanford University implementation)
- Collision detection using ring of infrared sensors
- Stereo pair of cameras, stereo tracking
- Automatic translation hold
- Wireless Ethernet for communications

Air-Bearing Table Demonstration in the JSC Building 9 Hi-Bay, 1998

5

8/30/2004

Mini AERCam Flight System Prototype

Mini AERCam was initiated by JSC Engineering Directorate in early 2000: Goal to reduce size and increase capability

Mini AERCam Features:

- 2 orthogonal video cameras
- 1 high-resolution still camera
- Recharge/refuel
- Wireless Ethernet communications
- Relative GPS
- Automatic attitude hold
- Automatic translation hold
- Automatic point-topoint maneuvers

Weight decreased from 35 lb to 10 lb Mini AERCam is 1/5 the volume of AERCam Sprint

8/30/2004

Mini AERCam System Development

8/30/2004

Mini AERCam Flight System Prototype

8/30/2004

13

Better Than Sprint, and Smaller Too

- · Mini AERCam is the successor to Sprint
 - The successful Sprint flight test yielded recommendations, including improvements for situational awareness
 - A follow-on crew evaluation yielded further recommendations for enhanced tele-operation

- The Mini AERCam Flight System Prototype was initiated in 2000
 - Engineering designed and built the smaller and more capable prototype
 - Also performed flight design validation tasks and crew evaluation
 - Result: "Nanosatellite" free-flyer integrated into the approximate form, fit, and function of a miniaturized flight configuration 8/30/2004

Mini AERCam Free Flyer Capabilities

Sprint:

- 6-DOF manual control
- Automatic attitude hold (inertial)
- Analog video

Mini AERCam:

- · 6-DOF manual control
- · Automatic attitude hold
- · Commanded attitude maneuvers
- Automatic position hold (relative)
- Commanded translational maneuvers
- · Automatic surface scans
- · Situational awareness (God's Eye View)
- Digital video
- · Rechargeable battery
- Rechargeable propulsion

8/30/2004

Mini AERCam Navigation Sensors

For Navigation, Sprint Had:

Quartz rate sensors

Mini AERCam Has:

- Draper MEMS gyros
 - •Smaller, lowe r power
- Precise Relative GPS
 - No Fige Flyer pointing constraintsNo lighting c onstraints

 - •Does not require visual identification
 - SubO-meter accuracy
- AutoTRAC Computer Vision System (ACVS) for precise docking navigation
 - •Uses retro-reflectors on docking target
 - •Has space flight heritage
 - •Is tightly integrated with video system
 - •Utilizes small ret)ro-reflectors at inspection sites on spacecraft to provide autonomous navigation

8/30/2004

Mini AERCam Free Flyer Technologies (1 of 2)

PROPULSION

- · Rechargeable pressurized xenon gas propulsion
 - 6 DOF thrusting capability (12 thruster configuration)
 - Compatible with nitrogen for ground operations

POWER

· Rechargeable batteries (Li-lon chemistry)

VIDEO

• CMOS color cameras ("Camera on a chip")

ILLUMINATION

Solid state illumination (LEDs)

Mini AERCam Free Flyer Technologies (2 of 2)

AVIONICS

- · PowerPC 740/750 based design
- · FPGA-centric architecture

COMMUNICATIONS

Avionics Processo Board

- · Digital transceiver for video, commands, and telemetry
- · Micro-patch antennas for communications and GPS navigation

GN&C

MEMS angular rate gyros for propagated relative attitude

· Relative navigation via GPS mini-receiver

MEMS Rate Gyros

• Pilot aids: Automatic attitude hold, LVLH hold, attitude maneuvers, translation hold, point-to-point guidance

8/30/2004

19

Flight-Oriented Design Validation Activities (1 of 2)

- Thermal vacuum testing completed at JSC
 - Vehicle functioned for the duration of a 36 hour test (three representative orbital temperatures)
 - All measured component temperatures were within limits
- · Radiation testing performed at University of Indiana
 - Validated use of Virtex-II Series FPGA for "hard core" avionics design
- Wireless communication link range test performed at JSC
 - Full bandwidth link with commands, telemetry and video successful at 300ft with single free flyer antenna turned 180 degrees from base station antenna

8/30/2004

Flight-Oriented Design Validation Activities (2 of 2)

- · Lighting lab test conducted
- · Preliminary analyses performed for a Shuttle mission
 - Shuttle communications coverage
 - Shuttle GPS navigation coverage
 - Shuttle thermal environment analysis
- Crew evaluation
 - Nancy Currie and the Astronaut Office made significant recommendations for improving displays during crew evaluation preparations
 - All tasks completed successfully with no significant problems identified

8/30/2004

21

Mini AERCam Crew Evaluation

- Tests conducted over six weeks in September-October 2003
- · 7 Crew Test Participants
 - Tony Antonelli
- Steve Swanson
- Drew Feustel
- Koichi Wakata
- Scott Parazynski
- George Zamka
- Steve Lindsey (piloted Sprint on STS-87)
- · Seven test cases
 - 3 Shuttle
 - 3 ISS
 - -1 docking
- Crew evaluated handling qualities and situational awareness; providing favorable real-time comments

Test Case 2: Scan Orbiter Surface Scan/inspect Orbiter landing gear doors, external tank doors, and aileron hinge.

Test Case 4: Traverse to Point on ISS Starting out at the ISS airlock, fly to the tip of the starboard solar array, then hold position.

8/30/2004

Additional Development for Shuttle Flight Testing

- Flight system enabling design and analyses
- Evaluation of Shuttle integration options
- Design for integration of LADAR
- Hangar design
- Magnetic docking prototype

Hangar Concept

8/30/2004

23

Magnetic Docking Prototype Hardware

8/30/2004

Mini AERCam Functional Testing

8/30/2004

25

Principal Test Facilities

"SAIL-like" hardware in the loop test facility, including avionics, flight software, communications, and GPS.

Both tele-operated and automatic functions.

AIR BEARING TABLE (ABT)
TEST FACILITY

Live air-bearing table demonstration includes avionics, flight software, communications, video, MEMS gyros, batteries, and propulsion.

Both tele-operated and automatic functions.

8/30/2004

